Find us on…
Code implemented using the Fortran Package Manager.
Main paper: Efficient Gillespie algorithms for spreading phenomena in large and heterogeneous higher-order networks, by Hugo P. Maia, Wesley Cota, Yamir Moreno, and Silvio C. Ferreira.
Reference: arxiv:2509.20174 DOI:10.48550/arXiv.2509.20174
This code simulates SIS dynamics on hypergraphs (Hyper-SIS). Each of the $N$ agents can be either susceptible ($\sigma_i = 0$) or infected ($\sigma_i = 1$). Infections occur via hyperedges, which are active if a critical mass of members is infected, while infected nodes recover spontaneously.
Key points:
par_b
and par_theta
correspond to $b$ and $\theta_0$.See the main paper for full details.
Add this package as a dependency using the Fortran Package Manager (fpm):
[dependencies]
hyperSIS.git = "https://github.com/gisc-ufv/hyperSIS"
See the documentation and main program for details.
The easiest way to use this project is through its Python interface.
This package will be published on PyPI in the future. Until then, you need to clone the repository manually.
Before installing, make sure that at least one Fortran compiler is available. By default, the package assumes GNU Fortran (gfortran
) installed and available in your PATH. See Installing GFortran for help.
Steps:
Clone the repository:
sh
git clone https://github.com/gisc-ufv/hyperSIS.git
cd hyperSIS
Activate your preferred Python environment (e.g., venv
, conda
, etc.):
```sh
python -m venv venv source venv/bin/activate
conda create -n hyperSIS python=3.11 conda activate hyperSIS ```
Install the Python package:
sh
pip install ./python
Verify if gfortran
and fpm
are accessible:
sh
gfortran --version
fpm --version
(Optional) A Google Colab notebook demonstrating all installation and usage steps is available here.
See examples.ipynb for examples.
Import the package with
import hyperSIS as hs
The simulation interface revolves around two main objects:
SimulationArgs
A dataclass containing all parameters required to configure a hyperSIS simulation, including network specification, algorithm choices, temporal settings, initial conditions, and epidemic parameters.
run_simulation(beta1: float, args: SimulationArgs)
The function that executes the simulation with the given arguments. Returns a SimulationResult
object containing the processed results, including network mapping, temporal evolution, and statistics of infected nodes.
The SimulationArgs
dataclass contains all configurable parameters for running a hyperSIS simulation.
verbose: bool
Enable verbose output.
Default: True
verbose_level: str
Logging level: 'info'
, 'warning'
, 'error'
, 'debug'
.
Default: warning
seed: int
Random seed for reproducibility.
Default: 42
remove_files: bool
Remove temporary files after execution.
Default: False
network: NetworkFormat
Network specification as a tuple. Optional parameters are in brackets:
("edgelist", path, [delimiter], [comment], [cache])
("fortran-edgelist", path, [cache])
("bipartite", path, [delimiter], [comment], [cache])
("xgi", name_or_object, [cache])
("xgi_json", path, [cache])
("hif", path, [cache])
("PL", gamma, N, [sample])
Default: ("edgelist", "example.edgelist", None, "#", False)
output_dir: Optional[str]
Directory to store simulation output. If None
, a temporary folder is used.
Default: None
algorithm: str
Simulation algorithm: 'HB_OGA'
or 'NB_OGA'
.
Default: HB_OGA
sampler: str
Sampling method: 'rejection_maxheap'
or 'btree'
.
Default: btree
tmax: int
Maximum simulation time.
Default: 100
use_qs: bool
Whether to use the quasi-stationary method.
Default: False
n_samples: int
Number of samples per simulation.
Default: 10
time_scale: str
Temporal scale for output: 'uniform'
or 'powerlaw'
.
Default: uniform
initial_condition: tuple
Initial state specification:
('fraction', float)
→ fraction of infected nodes('number', int)
→ exact number of initially infected nodes
Default: ("fraction", 1.0)
export_states: bool
Whether to export the full state trajectory.
Default: False
par_b: float
Epidemic infection rate scale $b$ in $\beta(m) = \beta[1 + b(m-1)]$.
Default: 0.5
par_theta: float
Epidemic critical mass threshold $\theta_0$ in $\theta(m) = 1 + (m-1)\theta_0$.
Default: 0.5
run_simulation(beta1: float, args: SimulationArgs)
Runs a Hyper-SIS simulation on the specified network.
Parameters:
beta1: float
Base infection rate $\beta(1)$ for pairwise interactions.args: SimulationArgs
Simulation parameters, including network specification, algorithm choice, number of samples, initial condition, and epidemic parameters par_b
and par_theta
.Returns:
SimulationResult
Object containing:
network: NetworkFormat
– the network specification used.
node_map: dict
– mapping from original node IDs to Fortran node IDs.temporal: TemporalResult
– temporal dynamics with:t: np.ndarray
– mean time per Gillespie tick.rho_avg: np.ndarray
– mean number of infected nodes over all runs.rho_var: np.ndarray
– variance of infected nodes.n_samples: int
– number of runs where infection is non-zero.When using this package, please cite the following paper:
Efficient Gillespie algorithms for spreading phenomena in large and heterogeneous higher-order networks, by Hugo P. Maia, Wesley Cota, Yamir Moreno, and Silvio C. Ferreira (2025)
Reference: arxiv:2509.20174 DOI:10.48550/arXiv.2509.20174
The BibTeX entry is:
@misc{maia2025hoga,
title={Efficient Gillespie algorithms for spreading phenomena in large and heterogeneous higher-order networks},
author={Hugo P. Maia and Wesley Cota and Yamir Moreno and Silvio C. Ferreira},
year={2025},
eprint={2509.20174},
archivePrefix={arXiv},
primaryClass={physics.soc-ph},
url={https://arxiv.org/abs/2509.20174},
}